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N A T U R A L  O S C I L L A T I O N S  OF A L I Q U I D  O F  F I N I T E  E L E C T R I C A L  C O N D U C T I O N  

I N  T H E  P R E S E N C E  O F  A N  E X T E R N A L  M A G N E T I C  F I E L D  

A.  I. Zadorozhny i  and  R.  A. Gruntfes t  UDC 533.951 

The effect of the finite electrical conduction (finiteness of the magnetic Reynolds number), 
which is considered a dissipative factor, on small natural oscillations of an ideal heavy liquid 
of finite depth whose free surface borders on vacuum is studied. A constant external horizontal 
magnetic field is applied to the liquid. The energy-balance equation is derived, and the theorem 
of wave attenuation with time is proved. Numerical calculations and the resulting asymptotic 
formulas give a complete pattern of the spectrum, including its continuous part. The amplitude- 
frequency characteristics of the wave modes are presented. 

In magnetohydrodynamics (MHD), the liquid is assumed to be an ideal liquid if it is nonviscous and 
infinitely conductive. Tile finiteness of the coefficient of conductivity is the dissipative factor associated with 
wave attenuation. In oscillation studies, two limiting cases of long and short waves are generally considered 
with tim use of the model of an infinitely deep liquid having a free surface as a short-wave approximation. 
The investigations of the effect of viscosity on free surface waves, which were begun by Lamb [1] at tim end of 
the 19th century, have acquired a complete mathematical  form [2]. The theory of MHD waves in a conducting 
liquid is still far from a complete theory. A number of studies have been focused on this subject (see, e.g. 
[3-7]) where the spectrum of free oscillations of dissipative MHD waves in the canonical regions was not 
treated in detail. In the present paper, this spectrum for an infinitely deep liquid is studied by analytical 
and numerical methods. The discrete and continuous oscillation spectra of a heavy liquid of finite conduction 
subjected to an external tlorizontal nmgnetic field are considered. 

1. F o r m u l a t i o n  of  t he  P r o b l e m .  We consider a nonviscous conducting liquid that  occupies the 
lower halfospace. There is a vacuum above the liquid. We introduce a Cartesian coordinate system such 
that  the Oxy plane coincides with the undisturbed horizontal surface of the liquid, and the z axis is directed 
downward. Let the gravity (0.0, g) and a constant  nmgnetic field (H0, 0, 0) be applied to the liquid. We 
investigate two-dimensional natural oscillations of the liquid in the xz plane. The liquid motion and the 
electromagnetic field are described by the equations given, for example, in [8]. We divide the space into two 
regions: 

1. Liquid (z ~> 0). Let V(Vx,O, V:) be the velocity vector, p be the density, c~ be the electrical 
conduction, and h(hx, 0, h:) and e(0, ey, 0) be, respectively, the disturbances in the magnetic- and electric- 
field intensities caused by the liquid motion. Assuming that  the oscillations are small, we write the linearized 
momentum and induction equations [8] in dimensionless form 

OV Oh Ohx OVz 1 
O---t--- g r a d ( p * ) + ~ x '  d i v V = O ,  d i v h = O ,  O---t-- O----~+~e,n Ah'z' (1) 

Oh,: OVz l l[~___~m(Ohz Oh. ) ] p. z 
O-'--t, - Ox + ~ e m  Ahz' e y = c  Oz ~ - V z  , =pa+- '~ l+Pd+hx ,  
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where Pa -- const is the free surface pressure, Pd is the hydrodynamic pressure, and A is the Laplace operator. 
2. Vacuum (z < 0). We denote the disturbances in the electromagnetic-field intensity by hl (h l z ,  0, hlz) 

and el(e lx ,  ely, elz). These functions satisfy the Maxwell equations (the displacement current is ignored) 

Oely _ 1 0 h l x  Oely _ 1 dhlz 
r o t h l = 0 ,  d i v h l = 0 ,  Oz c Ot ' Ox c Ot ' 

Oelx Oelz Oelx Oelz (2) 
O z 0--~ = 0, O x + - ~ z  = o . 

In Eqs. (1) and (2), c = c ~ 4 x / ~ / H o  is the velocity, c~ is the dimensional velocity of light, t/m = ~/(47rcr) is 
the magnetic viscosity, Rein = n H o / ( V m 4 V ~ )  is the magnetic Reynolds number, At = H~/(47rpgL) is the 
Alfv~n number, L = h/(27r) (A is the wavelength), and n 4 v ~ / H o  is the scale of time. 

Let z = ~(x, t) be the equation of a disturbed free surface (FS). On the FS, we introduce the linearized 
normal (subscript n) and tangential (subscript T) components of the magnetic-field intensity vector H and 
tensor T and the total-stress tensor P: 

0~ 0~ 
H n = h z - - ~ x ,  g r = l + h z ,  T n n = - O . 5 - h z ,  T n r = h : - ~ x ,  

Pnn = - P  q- Tnn, Pnr = T,~, p = Pa + z/A1 + Pd. 

We specify the following boundary conditions for systems (1) and (2): 
1) on the FS (liquid-vacuum interface) for z = 0: 

0r 
Vz = -~ ,  [Hn] = 0 --* hz = ht:, 

[e~ l = O -~ ey = ely = c \ Oz Ox -V~ , e~ e l ~ = 0 ,  (3) 

[Pnn] = 0 --~ p* + ~/AI = hlz,  [Tnr] = 0 --* h~ - hl~ = 0; 

2) at infinity as Izt ---* c~. ~?wo cases are possible here: 
a) the fields a t tenuate  in the liquid (discrete spectrum); 
b) the fields are bounded in the liquid (continuous spectrum). 

The  necessity of considering the continuous spectrum stems from the fact that the solutions obtained 
within the framework of the model of an ixffinitely deep layer also make sense for a layer of finite depth. 

2. R e d u c t i o n  t o  B o u n d a r y - V a l u e  P r o b l e m s  for  O r d i n a r y  Dif fe ren t ia l  E q u a t i o n s  ( O D E ) ,  
D i s s i p a t i o n  T h e o r e m .  To study natural oscillations, we separate the variables. Let 

(Vx, Vz,hz ,  hz, e~,e~,ez,p*,~) = (U, W , X , Z ,  Ez ,Ey ,  E z , Q , S ) e x p ( - A t  + iz) ,  

where A is the desired spectral parameter, whose real part  is a damping constant and whose imaginary part  
is the phase velocity of a travelling wave. A similar notat ion is introduced for tim vacuum (the subscript 1 is 
introduced). Substituting the last expression into (1) and (2), we obtain the following systems of ODE: 

1. For the liquid, 

- A U ( z )  = - iQ( z )  + i X ( z ) ,  - )~W(z)  = - Q ' ( z )  + iZ(z) ,  

- , k X ( z )  = - W ' ( z )  + [X"(z) - X(z)] /Rem,  iX( z )  + Z'(z) = O, (4) 

- ~ Z ( z )  = - W ( z )  + [ z " ( z )  - Z(z)]/Rem, i U ( : )  + W ' ( : )  = 0, 

2. For vacuum, 

X~(z) - iZ~(z) = 0, 

-1 [R--~m (X'(z)  - iZ(z ) )  - IV(z)]', E y =  c 

iX l ( z )  + Z~(z) = O, E~y(Z) = - ( A / c ) X l ( z ) ,  E~x(z) = iElz(Z), 
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iEkv(z ) : (A/C)Zl(Z), iElx(z) + E[z(z ) : O. 

The boundary conditions (3) on the FS can be transformed to give 

Q(O) § S/A1 : X[(0) ,  X(0 )  = Xl(0) ,  Z(0)  ~-~ Zl(0) ,  ~V(O) = --AS, 
(5) 

EI~(0) = 0, Ely(0) = I[~---~--~(X'(O)-iZ(O))-W(O)] 
c 

The vacuum problem is readily solved. With  allowance for wave attenuation at infinity (z ---+ oo), we have 

Zl (z) = z ( 0 )  exp (~), Xl(Z) = ix(o)  exp (z), 

Ely(Z) = -i(A/c) Z(O) exp (z), Etx(z) = 0, Elz(Z) = O. 

We consider system (4) for the liquid. Additional rearrangements of conditions (5) on the FS yield 

W(O) + AS = 0, Q(O) § S/A1 = iZ(0), X(0) = iZ(O). (6) 

With allowance for (4) and (6), we can prove the following dissipation theorem. 
T h e o r e m .  All oscillations of the liquid attenuate for 0 < Rein < oc and A1 > 0, i.e., the eigenvalues 

of the discrete spectrum lie in the right complex half-plane IRe(A) > 0]. 
We multiply the first four equations of system (4) by complex-conjugate quantities and integrate over 

z from 0 to oc. Then,  taking into account the attenuation conditions at infinity, we integrate by parts and 
combine the expressions obtained. As a result, we have the energy-balance equation 

§ + H I, = 

+ ~ ( 2 ' ( 0 ) 2 ( 0 )  + 2 ' ( o ) z ( o )  - 2 " ( o ) z ( o ) )  + (lIX'll 2 + Ilzql 2 + HxII 2 + Ilzl[2). 
O ~  

Here the norm can be interpreted-as I IF I] 2 = ~ I F ( z )  [ 2dz and the bar atop denotes the complex conjugation. 
, J  

o 
Furthermore, with allowance for the boundary  conditions (6) on the FS, we obtain 

1 iw(0)[2 A( IIUll" + IlWll 2) + A( IlXll 2 + IlZll ~- + Iz(0)l 2) + 

2 1 
- Re,,, IZ(0)I2 + ~ (llX'll2 + Ilz'll2 + IIx[12 + IlZll2) 

We set A = c~ + ifl and separate the real and imaginary parts: 
c[ 

~{l lUl[  2 § IlWl[ 2 + (l lXll 2 § IlZll 2 + IZ(~ + (~2 + Z2)A1 IW(0)I 2 

2 1 
-- Re,,, IZ(~ + ~ (llX'l12 + IIZ'l12 + llxl12 + IIZII2)' 

fl IW(O)I 2. fl(llUII 2 + IIWII ~) = ~(llXll 2 + IlZll 2 + IZ(~ 2) + (~2 + fl~)A1 

Hence, (~ > 0. The theorem is proved. 
Let fl ~ 0. After elimination of fl, the damping constant is given by 

a(  [lUll 2 § [[WH 2) = Rel~m ([Z(0)[2 + 1 (  [[X,[,.~ + [[ZtI[2 + [[Xl[O + [[ZH2)). 

This formula is rewrit ten in the convenient form a = D/(4K). Using the formula for the Joule heat density 
(MHD approximation) 

Dr = (rot H)2/Rem, 
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one can show that D is the total  Joule heat and K is the total kinetic energy. This result gives a physical 
in terpreta t ion of the dissipation theorem. 

After simple manipulations,  expressions (4) and (5) reduce to the fourth-order ODE 

z ( ' V ) ( z )  - 2z"(z)  + z ( z )  + R e " ( A  + 1/A)(Z"(z) - Z(z ) )  = 0 (7) 

subject  to the boundary conditions 

z " ( 0 )  - Z ' ( 0 )  - ~ ( z " (0 )  - z ( 0 ) )  + R e , ,  A + Z ' (0 )  - Rein A1 Z(0)  = 0, 
(S) 

Z ' ( 0 )  - Z (0 )  = 0. 

As z ---* oo, either the a t tenuat ion Z = 0 or the boundedness IZI < o~ condition is specified. The  resulting 
boundary-value problem is nonlinear in the spectral  parameter  A. 

3. L iqu id  M e d i u m  o f  In f in i t e  C o n d u c t i o n  ( Id ea l  L iqu id ) .  This case is of interest as a limiting 
case of a finite-conduction liquid for Re,. = oo. From (7) and (8) [the second condition in (8) can be ignored], 

it follows that  

(A + 1 / A ) ( z " ( z )  - z ( z ) )  = 0, A1 (A + 1 /A)z ' (0 )  - (1 + A1)Z(0)/A = 0. 

We consider two cases: 
1. For A0 = =hi V/(1 + 2A1)/AI and Z(z)  -- C e x p  ( - z )  (decrease with depth), we have a surface wave 

tha t  does not decay with t ime and propagates at  the  phase velocity Ao in the horizontal direction. 
2. For A0 = =hi V ]Z"(z) - Z(z)l < oo, ]Z'(0)] < o~, Z(0) = 0, and IV(0) = 0, we have a progressive 

internal  Alfv~n wave of a rb i t rary  shape and subject  to the "rigid cap" condition on its free surface. In this 
case, the spectrum of the problem has the infinite algebraic multiplicity. 

Below, we show tha t  these are tile limiting cases for a liquid of finite conduction for discrete and 
continuous spectra, respectively. 

4. L iqu id  M e d i u m  o f  F i n i t e  C o n d u c t i o n .  C o n t i n u o u s  S p e c t r u m .  We consider a medium 
of finite conduction [boundary-value problem (7), (8) under the boundedness condition at infinity]. The 
characteristic equation for this medium has the form 

(#2 _ 1)(#2 _ (1 - m2)) --- 0, m 2 -- ae,"(A + l/A). 

T h e  requirement that  the solution be bounded in dep th  yields the general solution 

Z(z)  = CI exp ( - z )  + C2 sin (r/z) + C3 cos(~/z), 

where q is an arbitrary real parameter.  The conditions on the FS imply that  

C2 = A4A1 + A2 + 2 CI, C3 = A2(A2AI+I+2A1) CI, A2A1 # 1, A = a + v/~o 2 - 1, 
(1 - A2A1)v (1 - A2AI)A1 (9) 

1 + r/2 ( A4A1 + A 2 + 2 A2(A2A1 + 1 + 2A1) cos (qz) ) .  
a = 2Re----~' Z(z)  = C1 _ exp ( - z )  + (1 - A2A1)*/ sin (r/z) + (1 - A2A1) 

According to the terminology of [1], the wave s t ruc ture  in depth is cellular (it becomes periodic with increase 
in depth).  When A = 1 / v / ~  (the case A = - 1 / v / - ~ )  is impossible), we have the periodic wave s t ructure  

C1 = O, C3 = C2/~, ~2 = Re,"(1 + A1)/v/-~ - 1, 

Z(z)  -- C2(cos (r/z) + sin (r/z)/~?), ~l r O, Rein > x / ~ / ( 1  + A1). 

The following propert ies of the continuous spec t rum are noteworthy: 
1) for a < l ,  there exists a travelling wave that  at tenuates with time; in this case, c~ -- 

(1 + 7/2)/(2Re,.),/3 = vri - -  a 2, and ]A] = 1 [the right half-circle in the complex plane A; Re(A) > 0]; 

2) for ~ > l,  two nonoscillating regimes (modes) occur, Aslow = a - ~ - 1 being the decrement  of 
a slowly attenuating mode and Arapi d = ~ + ~ - 1 being the decrement of a rapidly attenuating mode; 
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holds; 

3) a multiple real root A* = 1 exists; 
4) the waves are internal in nature: the FS remains undeformed and the "rigid cap" condition Z(0) = 0 

5) tile magnetic field in the vacuum is not disturbed; 
6) the limit solution as Rein ~ cc is tile internal Alfv~n wave 

A = •  Z ( z )  = C(exp ( - z )  + sin (rlz)/r 1 - cos (r/z)) , 

whose structure is determined by the arbitrary real parameter r/. This result refines the findings of Sec. 3 for 
an infinite-conduction liquid. 

Let us consider the case of a multiple root in detail, namely, the process of merging the real roots and 
the appearance of a pair of complex-conjugate roots [A* = 1 and Re,* n = (1 + r12)/2]. Separating the variables, 
we seek a solution in the form 

~2k-m(Z)t m 
~(z,  t) = exp (-At) E 

m! 

Substituting this expression into the equations of tile initial boundary-value problem and equating the coef- 
ficients of the same powers of t yield a sequence of boundary-value problems for determining the functions 
'~j(z, A). This sequence is truncated for j = 2, i.e., the sum contains only two terms and has the form 

~(z,  t) : (tZ(z, A) + Z i ( z  , A)) exp (-At),  

where tim eigenfunction Z(z ,  A) is given by expression (9), and tile associated function Z~ is determiimd 
by the derivative of the eigenfunction with respect to the spectral parameter A. This is characteristic of 
holomorphic operator beams [2]. Tile time-dependent exponential factor in the above formula leads to a 
possible initial increase in the amplitude followed by the exponential damping. 

5. Liqu id  of  F in i t e  C o n d u c t i o n .  D i sc re t e  S p e c t r u m .  With the solution of the boundary-value 
problem (7), (8) subject to the attenuation-with-depth condition (z ---, oo), we have 

Z ( z ) = C t e x p ( - z ) + C 2 e x p ( - ~ z ) ,  ~ e = ~ / 1 - R e m ( A + l / A ) ,  R e ( r e ) > 0 ,  A # + i .  (10) 

Tim degenerate case A = +i  corresponds to a root of multiplicity two ae = 1. Furthermore, it can be shown 
that  an attenuation-with-depth regime is absent. For other values of A, we satisfy the boundary conditions 
on the FS and obtain the dispersion equation 

i ( 1 )  A4AI+ A2 + 2  
1 - R e , , ,  A + X  = A2(A2AI+I+2AI)"  (11) 

In this ease, the relation Ct = -0 .5(1 + ~e)C2 is valid. Evidently, Eq. (11) has no real positive roots. It also 
has two extraneous roots A = +i.  After these roots are eliminated, we obtain 

~/ ( 1) Rem A(A2A1 + 1 +  2A1) _ 1. 
1 - R e m  A + ~  - 2 A 2 A I + I  

This equation is equivalent to the polynonfial 

P(A, A1, Rein) = A3(A2A1 + 1 + 2A1) 2 4 (A4A12 _ 1) = 0 
Rein 

with the condition for the choice of extraneous roots 

Re{Rein A(A2A1 + 1  + 2A1) _ 1" ~ /> 0. 
2(A2AI + 1) ] 

Figure 1 shows the behavior of the dispersion equation in the complex plane A = a + fli for fixed Alfv6n 
numbers (A1 varies from 0.7 to 1.9 with step 0.2). Two at tenuat ing regimes of oscillations can exist, which 
we call high-frequency and low-frequency modes. As Rein --~ oo, for a high-frequency mode, we observe a 
continuous linfiting passage to the case of a liquid of finite conduction, which was considered in Sec. 3. We 
write the corresponding asymptotic expansion 
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Fig. 1 

1/1/1/1/~2A1 [ ~ A15/4(1 + A1)U2~ ~ A13/4(1 + A1) 1/2 1 

It should be noted that the above and all subsequent asymptotic expansions are obtained with the use of 
the Newton diagram [9]. In the case of an infinite-conduction liquid (see See. 3), the low-frequency mode is 
absent. For A1/Rem << 1, we have the asymptotic formula 

( _ 1 4. + o (  A1  2/3 A 
V Rem \ 2 ~ '*] \ Rein ] " 

For A1 < AI*, the dispersive lines of the high-frequency mode have maximum points of the damping 
constant. The low-frequency mode possesses this property for A1 > AI*. It is noteworthy that the solutions 
have "break" points, which form a "break" curve shown as a dashed curve in Fig. 1. This complex behavior of 
the dispersive curves is attributed "to the existence of the complex root of multiplicity two, which is determined 
from the system (bifurcation equations) 

P(A, A1, Rein) -- 0, P~(A, Al, Re,n) = 0. 

An analysis shows that the system has the unique solution in the right half-plane Re(A) > 0 for A1 > 0 and 

Rein > 0 

A* = 0.417498 4- i �9 0.818077, Al* = 1.417677, Re* = 0.925158, 

which was found numerically. We note that a complex root of multiplicity two rarely occurs in hydromechanics 
[2]; therefore, it is of considerable interest. In the neighborhood of this root, we have the asymptotic form 

A = A* 4- (0.418 427 :F i .  0.024 987) Rein Re*" 

Any branch of the root can be chosen. It follows that the difference between these roots decreases for 
Rein > Re* and increases for Rein < Re*. As in the case of a multiple real root (see See. 4), the complex 
amplitude has the form 

Z(z ,  t, A*) = ( tZ(z ,  A*) + Z{,(z, A*)) exp (-A't) .  

The eigenfunction Z(z, A) is given by formula (10). The time-dependent factor t can also lead to an initial 
increase in the wave amplitude followed by the exponential damping. 

The "break" curve is determined by solving numerically the system 

P(A, A1, Rem)= 0, Re(Rein A(A2A1 § 1 + 2A1) _ 1) = 0. 
2(A2A1 + 1) 
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As a result, we obtain the universal relationship Rein(A1) plotted in Fig. 2. The graph has the horizontal 
asymptote  Rein -- 4 /3  as A1 --+ oc. In the region above the graph, there are two (high-frequency and low- 
frequency) oscillation regimes that at tenuate with time. In the region below the graph, the high-frequency 
(A1 > Al*) and low-frequency (A1 < Al*) regimes occur, respectively, on the right and left parts of the region. 
A numerical analysis shows that on the "break" curve, the exponent ee in formula (10) vanishes and the 
eigenfunction does not decay with depth. With further decrease in the magnetic Reynolds number Rein, the 
discrete spectrum becomes a continuous spectrum, and the dispersive curve is shaped like tan arc of a circle 
of unit radius up to the multiple point A = 1 (the dashed curve in Fig. 1), then the reginms of slow and rapid 
aperiodic damping occur (see Sec. 4). 

In experimental oscillation studies, it is of interest to consider the amplitude-frequency characteristics 
that  correspond to a monochromatic wave of excitation pressure p = P0 cos (x + wt) that travels over the 
FS [w E [0, co) and Im (P0) --- 0]. Figure 3 shows the dynamic coefficient K D  for the amplitude of vertical 
magnetic intensity versus the parameter w for A1 = 0.5 (the solid curve refers to Rein = 5, and the dashed 
curve to Rein -- 1). As should be expected, the quasiresonant burst is pronounced for sufficiently large 
magnetic Reynolds numbers and travelling-wave velocities close to the spectral velocities: ~ = I m  (A). 
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